Attiny2313 схемы для начинающих. Говорящая "шарманка" на ATtiny2313 и SD карте - Электронные игрушки - Схемы для начинающих. Настройка Geany под ATtiny2313

Во многих устройствах бытовой техники и промышленной автоматики сравнительно недавних лет выпусков установлены механические счетчики. Они продукцию на конвейере, витки провода в намоточных станках и т. п. В случае выхода из строя найти аналогичный счетчик оказывается непросто, в отремонтировать невозможно ввиду отсутствия запасных частей. Автор предлагает заменить механический счетчик электронным. Электронный счетчик, разрабатываемый на замену механическому, получается слишком сложным, если строить его на микросхемах малой и средней степени интеграции (например, серий К176, К561). особенно если необходим реверсивный счет. А чтобы сохранить результат при выключенном питании, необходимо предусмотреть резервную батарею питания.

Но можно построить счетчик всего на одной микросхеме - универсальном программируемом микроконтроллере, имеющем в своем составе разнообразные периферийные устройства и способном решать очень широкий круг задач. Многие микроконтроллеры имеют особую область памяти - EEPROM. Записанные в нее (в том числе во время исполнения программы) данные, например, текущий результат счета, сохраняются и после отключения питания.

В предлагаемом счетчике применен микроконтроллер Attiny2313 из семейства AVR фирмы Almel. В приборе реализован реверсивный счет, вывод результата с гашением незначащих н

улей на четырехразрядный светодиодный индикатор, хранение результата в EEPROM при выключенном питании. Встроенный в микроконтроллер аналоговый компаратор использован для своевременного обнаружения уменьшения напряжения питания. Счетчик запоминает результат счета при отключении питания, восстанавливая его при включении, и аналогично механическому счетчику снабжен кнопкой обнуления показаний.

Схема счетчика представлена на рисунке. Шесть линий порта В (РВ2- РВ7) и пять линий порта D (PDO, PD1, PD4-PD6) использованы для организации динамической индикации результата счета на светодиодный индикатор HL1. Коллекторными нагрузками фототранзисторов VT1 и VT2 служат встроенные в микроконтроллер и включенные программно резисторы, соединяющие соответствующие выводы микроконтроллера с цепью его питания.

Увеличение результата счета N на единицу происходит в момент прерывания оптической связи между излучающим диодом VD1 и фототранзистором VT1, что создает нарастающий перепад уровня на входе INT0 микроконтроллера. При этом уровень на входе INT1 должен быть низким, т. е. фототранзистор VT2 должен быть освещен излучающим диодом VD2. В момент нарастающего перепада на входе INT1 при низком уровне на входе INT0 результат уменьшится на единицу. Другие комбинации уровней и их перепадов на входах INT0 и INT1 результат счета не изменяют.

По достижении максимального значения 9999 счет продолжается с нуля. Вычитание единицы из нулевого значения дает результат 9999. Если обратный счет не нужен, можно исключить из счетчика излучающий диод VD2 и фототранзистор VT2 и соединить вход INT1 микроконтроллера с общим проводом. Счет будет идти только на увеличение.

Как уже сказано, детектором снижения напряжения питания служит встроенный в микроконтроллер аналоговый компаратор. Он сравнивает нестабилизированное напряжение на выходе выпрямителя (диодного моста VD3) со стабилизированным на выходе интегрального стабилизатора DA1. Программа циклически проверяет состояние компаратора. После отключения счетчика от сети напряжение на конденсаторе фильтра выпрямителя С1 спадает, а стабилизированное еще некоторое время остается неизменным. Резисторы R2-R4 подобраны так. что состояние компаратора в этой ситуации изменяется на противоположное. Обнаружив это, программа успевает записать текущий результат счета в EEPROM микроконтроллера еще до прекращения его функционирования по причине выключения питания. При последующем включении программа прочитает число, записанное в ЕЕРРОМ, и выведет его на индикатор. Счет будет продолжен с этого значения.

Ввиду ограниченного числа выводов микроконтроллера для подключения кнопки SB1, обнуляющей счетчик, использован вывод 13, служащий инвертирующим аналоговым входом компаратора (AIM) и одновременно - «цифровым» входом РВ1. Делителем напряжения {резисторы R4, R5) здесь задан уровень, воспринимаемый микроконтроллером как высокий логический При нажатии на кнопку SB1 он станет низким. На состояние компаратора это не повлияет, так как напряжение на входе AIN0 по-прежнему больше, чем на AIN1.

При нажатой кнопке SB1 программа выводит во всех разрядах индикатора знак «минус», а после ее отпускания начинает счет с нуля. Если при нажатой кнопке выключить питание счетчика, текущий результат не будет записан в EEPROM, а хранящееся там значение останется прежним.

Программа построена таким образом, что ее легко адаптировать к счетчику с другими индикаторами (например, с общими катодами), с другой разводкой печатной платы и т. п. Небольшая коррекция программы потребуется и при использовании кварцевого резонатора на частоту, отличающуюся более чем на 1 МГц от указанной.

При напряжении источника 15 В измеряют напряжение на контактах 12 и 13 панели микроконтроллера относительно общего провода (конт.10). Первое должно находиться в интервале 4…4.5 В, а второе - быть больше 3,5 В, но меньше первого. Далее постепенно уменьшают напряжение источника. Когда оно упадет до 9… 10 В, разность значений напряжения на контактах 12 и 13 должна стать нулевой, а затем поменять знак.

Теперь можно установить в панель запрограммированный микроконтроллер, подключить трансформатор и подать на него сетевое напряжение. Спустя 1,5…2 с нужно нажать на кнопку SB1. На индикатор счетчика будет выведена цифра 0. Если на индикатор ничего не выведено, еще раз проверьте значения напряжения на входах AIN0.AIN1 микроконтроллера. Первое должно быть больше второго.

Когда счетчик успешно запущен, остается проверить правильность счета, поочередно затеняя фототранзисторы непрозрачной для ИК лучей пластиной. Для большей контрастности индикаторы желательно закрыть светофильтром из красного органического стекла.

Как производится программирование микроконтроллеров ATtiny2313? Итак, имеем микроконтроллер ATtiny2313, LPT порт (обязательно железный - никакие USB-2-LPT не работают), несколько проводков (длина не более 10см) и конечно же паяльник. Желательно иметь разъём DB-25M (папа), с ним будет удобней подключать микроконтроллер, но можно обойтись и без него. Припаиваем проводки к выводам 1, 10, 17, 18, 19, 20 микроконтроллера. Получаем нечто вроде того, что на фото:


Я делал без разъёма (в наличии были только мамы...), и вот что получилось:


Правда у меня LPT порт вынесен на стол с помощью кабеля длиной 1,5 метра. Но при этом кабель должен быть экранированный, иначе будут наводки, помехи и ничего не получится. Схема этого устройства программирования микроконтроллера вот такая:


Если быть совсем честным, то желательно собрать "правильный" программатор. И потом будет проще и порт целее. Я пользую STK200/300. Далее используем программу PonyProg2000. После запуска программы она "заржет...." как настоящий пони. Чтобы этого больше не слышать в появившемся окне ставим галочку "Disable sound". Жмём "ОК". Выскакивает окошко которое говорит, что нужно откалибровать программу. Компы бывают же разные и медленные и шустрые. Жмём "ОК". Выскакивает ещё одно окошко - это нам говорит, что нужно настроить интерфейс (какой программатор и куда подключен.). Итак заходим в меню: Setup -> Calibration. В появившемся окне:


Жмём "YES". Проходит пара секунд и программа говорит "Calibration OK". Далее заходим в меню: Setup -> Interface Setup. В появившемся окошке настраиваем как у показано на рисунке.


Теперь заходим в меню: Command -> Program Options. В появившемся окошке настраиваем как показано на рисунке.


Всё готово к программированию!... Итак, последовательность действий:


1. Выбираем из списка "AVR micro"
2. Из другого списка выбираем "ATtiny2313"
3. Загружаем файл прошивки (File -> Open Device File), выбираем нужный файл, например "rm-1_full.hex".
4. Жмём кнопочку "Launch program cycle". Когда программирование завершится прога скажет "Program successful"
5. Ну и напоследок надо запрограммировать так называемые Фьюзы (fuses). Для этого жмём кнопочку "Security and Configuration Bits". В появившемся окне жмём "Read", потом выставляем галочки и жмём "Write".

ВНИМАНИЕ! Если Вы не знаете, что означает тот или иной конфигурационный бит, то не трогайте его. Вот теперь у нас готовый к работе контроллер ATtiny2313! На форуме можно скачать программу PonyProg2000 и оригинал статьи с дополнительными рисунками. Материал для сайта Радиосхемы предоставил Ansel73.

AVR RISC архитектура:

RISC (Reduced Instruction Set Computer). Данная архитектура обладает большим набором инструкций, основное количество которых исполняются в 1 машинный цикл. Из этого следует, что по сравнению с предшествующими микроконтроллерами на базе CISC архитектуры (например, MCS51), у микроконтроллеров на RISC быстродействие в 12 раз быстрее.

Или если взять за базу определенный уровень быстродействия, то для выполнения данного условия микроконтроллерам на базе RISC (Attiny2313) необходима в 12 раз меньше тактовая частота генератора, что приводит к значительному снижению энергопотребления. В связи с этим возникает возможность конструирование различных устройств на Attiny2313, с использованием батарейного питания.

Оперативно — Запоминающее Устройство (ОЗУ) и энергонезависимая память данных и программ:

  • 2 кБ самостоятельно программируемой в режиме Flash памяти программы, которая может обеспечить 10 000 повторов записи/стирания.
  • 128 Байт записываемой в режиме EEPROM памяти данных, которая может обеспечить 100 000 повторов записи/стирания.
  • 128 Байт SRAM памяти (постоянное ОЗУ).
  • Имеется возможность использовать функцию по защите данных программного кода и EEPROM.

Свойства периферии:

  1. Микроконтроллер Attiny2313 снабжен восьми разрядным таймер-счетчиком с отдельно устанавливаемым предделителем с максимальным коэффициентом 256.
  2. Так же имеется шестнадцати разрядный таймер-счетчик с раздельным предделителем, схемой захвата и сравнения. Тактироваться таймер – счетчик может как от внешнего источника сигнала, так и от внутреннего.
  3. Два канала. Существует режим работы быстрый ШИМ-модуляции и ШИМ с фазовой коррекцией.
  4. Внутренний аналоговый компаратор.
  5. Сторожевой таймер (программируемый) с внутренним генератором.
  6. Последовательный универсальный интерфейс (USI).

Особые технические показатели Attiny2313:


  • Idle — Режим холостого хода. В данном случае прекращает свою работу только центральный процессор. Idle не оказывает влияние на работу SPI, аналоговый компаратор, аналого-цифровой преобразователь, таймер-счетчик, сторожевой таймер и систему прерывания. Фактически, происходит только остановка синхронизация ядра центрального процессора и флэш-памяти. Возврат в нормальный режим работы микроконтроллера Attiny2313 из режима Idle происходит по внешнему либо внутреннему прерыванию.
  • Power-down — Наиболее экономный режим, при котором микроконтроллер Attiny2313 фактически отключается от энергопотребления. В этом состоянии происходит остановка тактового генератора, выключается вся периферия. Активным остается лишь модуль обработки прерываний от внешнего источника. При обнаружении прерывания микроконтроллер Attiny2313 выходит из Power-down и возвращается в нормальный режим работы.
  • Standby – в этот дежурный режим энергопотребления микроконтроллер переходит по команде SLEE. Это аналогично выключению, с той лишь разницей, что тактовый генератор продолжает свою работу.

Порты ввода — вывода микроконтроллера Attiny2313:

Микроконтроллер наделен 18 выводами ввода – вывода, которые можно запрограммировать исходя из потребностей, возникающих при проектировании конкретного устройства. Выходные буферы данных портов выдерживают относительно высокую нагрузку.

  • Port A (PA2 — PA0) – 3 бита. Двунаправленный порт ввода-вывода с программируемыми подтягивающими резисторами.
  • Port B (PB7 — PB0) – 8 бит. Двунаправленный порт ввода-вывода с программируемыми подтягивающими резисторами.
  • Port D (PD6 — PD0) – 7 бит. Двунаправленный порт ввода-вывода с программируемыми подтягивающими резисторами.

Диапазон питающего напряжения:

Микроконтроллер успешно работает при напряжении питания от 1,8 до 5,5 вольт. Ток потребления зависит от режима работы контроллера:

Активный режим:

  • 20 мкА при тактовой частоте 32 кГц и напряжении питания 1,8 вольт.
  • 300 мкА при тактовой частоте 1 МГц и напряжении питания 1,8 вольт.

Режим энергосбережения:

  • 0,5 мкА при напряжении питания 1,8 вольт.

(3,6 Mb, скачано: 5 934)

В данной статье предлагается схема цифрового термометра на микроконтроллере AVR ATtiny2313, датчике температуры DS1820 (или DS18b20), подключенному к микроконтроллеру по протоколу 1-wire, и ЖК-дисплее 16x2 на контроллере HD44780. Описываемое устройство может найти широкое применение среди радиолюбителей.

Программа для микроконтроллера написана на ассемблере в среде AVR Studio. Монтаж выполнен на макетной плате, кварцевый резонатор на 4МГц, микроконтроллер ATtiny2313 можно заменить на AT90S2313, предварительно перекомпилировав исходный код программы. Погрешность датчика DS1820 около 0,5 С. В архиве также находится прошивка для случая если используется датчик DS18B20. Опрос датчика производится каждую секунду.

WAV-плеер собран на микроконтроллере AVR ATtiny85 (можно использовать ATtiny25/45/85 серии). У микроконтроллеров этой серии всего восемь ножек и два ШИМ (Fast PWM) с несущей 250kHz. Для управления картой памяти достаточно всего 6 проводов: два для питания и четыре сигнальные. Восемь ножек микроконтроллера вполне достаточно для работой с картой памяти, вывода звука и кнопки управления. В любом случае данный плеер очень прост.

С помощью данного измерителя ёмкости можно легко измерить любую ёмкость от единиц пФ до сотен мкФ. Существует несколько методов измерения емкости. В данном проекте используется интеграционный метод.

Главное преимущество использования этого метода в том, что измерение основано на измерении времени, что может быть выполнено на МК довольно точно. Этот метод очень подходит для самодельного измерителя ёмкости, к тому же он легко реализуем на микроконтроллере.

Данный проект был сделан по просьбе друга для установки на дверь в складское помещение. В дальнейшем было изготовлено ещё несколько по просьбе друзей и знакомых. Конструкция оказалась простой и надёжной. Работает данное устройство так: пропускает только те RFID-карты, которые были заранее занесены в память устройства.

8 битный AVR микроконтроллер с 2 КБ программируемой в системе Flash памяти

Характеристики:

  • AVR RISC архитектура
  • AVR — высококачественная и низкопотребляющая RISC архитектура
    120 команд, большинство которых выполняется за один тактовый цикл
    32 8 битных рабочих регистра общего применения
    Полностью статическая архитектура
  • ОЗУ и энергонезависимая память программ и данных
    2 КБ самопрограммируемой в системе Flash памяти программы, способной выдержать 10 000 циклов записи/стирания
    128 Байт программируемой в системе EEPROM памяти данных, способной выдержать 100 000 циклов записи/стирания
    128 Байт встроенной SRAM памяти (статическое ОЗУ)
    Программируемая защита от считывания Flash памяти программы и EEPROM памяти данных
  • Характеристики периферии
    Один 8- разрядный таймер/счетчик с отдельным предделителем
    Один 16-разрядный таймер/счетчик с отдельным предделителем, схемой сравнения, схемой захвата и двумя каналами ШИМ
    Встроенный аналоговый компаратор
    Программируемый сторожевой таймер со встроенным генератором
    USI — универсальный последовательный интерфейс
    Полнодуплексный UART
  • Специальные характеристики микроконтроллера
    Встроенный отладчик debugWIRE
    Внутрисистемное программирование через SPI порт
    Внешние и внутренние источники прерывания
    Режимы пониженного потребления Idle, Power-down и Standby
    Усовершенствованная схема формирования сброса при включении
    Программируемая схема обнаружения кратковременных пропаданий питания
    Встроенный откалиброванный генератор
  • Порты ввода — вывода и корпусное исполнение
    18 программируемых линий ввода — вывода
    20 выводной PDIP, 20 выводной SOIC и 32 контактный MLF корпуса
  • Диапазон напряжения питания
    от 1.8 до 5.5 В
  • Рабочая частота
    0 — 16 МГц
  • Потребление
    Активный режим:
    300 мкА при частоте 1 МГц и напряжении питания 1.8 В
    20 мкА при частоте 32 кГц и напряжении питания 1.8 В
    Режим пониженного потребления
    0.5 мкА при напряжении питания 1.8 В

Блок- схема ATtiny2313:


Общее описание:

ATtiny2313 — низкопотребляющий 8 битный КМОП микроконтроллер с AVR RISC архитектурой. Выполняя команды за один цикл, ATtiny2313 достигает производительности 1 MIPS при частоте задающего генератора 1 МГц, что позволяет разработчику оптимизировать отношение потребления к производительности.

AVR ядро объединяет богатую систему команд и 32 рабочих регистра общего назначения. Все 32 регистра непосредственно связаны с арифметико-логическим устройством (АЛУ), что позволяет получить доступ к двум независимым регистрам при выполнении одной команды. В результате эта архитектура позволяет обеспечить в десятки раз большую производительность, чем стандартная CISC архитектура.

ATtiny2313 имеет следующие характеристики: 2 КБ программируемой в системе Flash память программы, 128 байтную EEPROM память данных, 128 байтное SRAM (статическое ОЗУ), 18 линий ввода — вывода общего применения, 32 рабочих регистра общего назначения, однопроводный интерфейс для встроенного отладчика, два гибких таймера/счетчика со схемами сравнения, внутренние и внешние источники прерывания, последовательный программируемый USART, универсальный последовательный интерфейс с детектором стартового условия, программируемый сторожевой таймер со встроенным генератором и три программно инициализируемых режима пониженного потребления. В режиме Idle останавливается ядро, но ОЗУ, таймеры/счетчики и система прерываний продолжают функционировать. В режиме Power-down регистры сохраняют свое значение, но генератор останавливается, блокируя все функции прибора до следующего прерывания или аппаратного сброса. В Standby режиме задающий генератор работает, в то время как остальная часть прибора бездействует. Это позволяет очень быстро запустить микропроцессор, сохраняя при этом в режиме бездействия мощность.

Прибор изготовлен по высокоплотной энергонезависимой технологии изготовления памяти компании Atmel. Встроенная ISP Flash позволяет перепрограммировать память программы в системе через последовательный SPI интерфейс или обычным программатором энергонезависимой памяти. Объединив в одном кристалле 8- битное RISC ядро с самопрограммирующейся в системе Flash памятью, ATtiny2313 стал мощным микроконтроллером, который дает большую гибкость разработчика микропроцессорных систем.