Самодельный логический анализатор. Доработка логического анализатора из китая. Интересные плюшки в софте от Saleae Logic

Для работы в сложных цифровых схемах китайский логический анализатор вещь крайне необходимая. Подкупает так же и его небольшая цена и удобное программное обеспечение. И он вполне меня устраивал пока не возникла необходимость одновременно просмотреть работу разных узлов схемы, питающихся от разных источников и не имеющих общей земли. Изначально анализатор имеет 8 не развязанных по питанию каналов с амплитудой импульсов на входе 5 вольт. Данная доработка позволяет сделать входы анализатора гальванически развязанными и работать с импульсами амплитудой от 3-х вольт до 25 вольт. Положение галетных переключателей выбирается в зависимости от размаха входных импульсов. Но расчетно схема сохранит работоспособность до 65 вольт.

В схеме используются высокоскоростные оптроны, рассчитанные для работы в оптоволоконных сетях. Частотные характеристики оптрона выше, чем может пропустить анализатор,так как минимальная длительность импульса которую может зарегистрировать анализатор составляет что то около 42 наносекунд. Ток светодиода оптрона выбран в районе 6-7,5mA. Оптрон допускает повышение тока до 15mA. А такой ток возникнет при входном напряжении 65 вольт при положении галетного переключателя "25v".

Конкретно моя плата содержит 4 гальванически развязанных канала и 4 не развязанных с 5-ти вольтовыми входами. Питание подается с платы анализатора. При этом надо провести некоторую доработку: достать из корпуса плату анализатора, перерезать дорожку идущую к выводу 9 разъема и подать на этот вывод через резистор 10 Ом напряжение с правого вывода LM1117.

Схема и конструкция получились достаточно простыми, а возможностей использования добавилось значительно.
При испытании гальванически развязанных входов, для чистоты эксперимента, входы подключались параллельно. Т.е взаимно соединялись 4 входа IN A,B,C,D и соответственно Gnd A,B,C,D . Переключатели устанавливались в одинаковое положение. Импульсы создавались искусственным дребезгом контактов и внешним источником питания на соответствующее напряжение.

При сборке использовались оптроны 6N137, переключатели МПН-1, в делителях стоят резисторы смд0805, но поместятся и 1206.При впаивании шлейфа для подключения к анализатору частично изменена последовательность, но на плате все подписано.

Вместо переключателей МПН-1 можно использовать любые другие, правда при этом придется корректировать печатную плату или использовать провода. Автор - Дубовицкий Николай.

Здравствуйте, уважаемые радиолюбители. В этой публикации рассмотрим анализатор, который, как известно, один из самых необходимых инструментов в арсенале радиолюбителя. Это видео снято на канале Паяльник TV. Автор ролика расскажет о маленьком, но незаменимом во многих случаях приборчике – логическом анализаторе. Он по своим функциям является клоном известного логического анализатора Saleae Logic, который можно приобрести в интернет-магазинах. В своё время он был купен примерно за 5-6 долларов. Это миниатюрный 8-канальный логический анализатор с максимальной частотой сэмплирования 24 Мгц.

На сегодняшний день компания Saleae выпустила довольно много новых моделей логических анализаторов, в том числе линейку Про, в которой возможно переключать логические уровни, то есть, есть возможность работы с логическими уровнями 1,8 В.

Также возможность появилась захвата аналогового сигнала, правда, с невысокой частотой дискретизации. На момент приобретения этого клона в линейке Saleae было всего, если я не ошибаюсь, 2 логических анализатора это 8-канальный и 16-канальный. И вот у меня в руках 8-канальный анализатор, то есть, его клон. В комплекте было 10 таких проводков длиной где-то 25 см, с такими разъёмами, которые на IDC и PLS контакты. И сразу я заказал такой наборчик небольших щупов, чтобы было удобно сразу подцепиться либо к ножкам компонентов, либо в других случаях, когда такие контакты невозможно использовать.

И большим, конечно, стимулом, можно сказать, к созданию этого обзора стала новая версия программного обеспечения от компании Saleae, которое обладает заметно большими возможностями перед старыми версиями. И большая часть этого обзора будет посвящена именно обзору программного обеспечения, так как, собственно, здесь особо нечего рассказывать. Так как этот логический анализатор на основе ПК, и схема его достаточно проста. Здесь лишь один контроллер, задача которого – в реальном времени передавать данные на USB. И обвязка минимальна. Сейчас я покажу поближе. Корпус разбирается довольно просто, и перед нами теперь лежит такая платка. Как я говорил, ничего особенного здесь нет. Разъём mini-USB, кварц 24 МГц, сам контроллер с минимумом обвязки. Здесь подтягивающие резисторы, и резисторы последовательно стоят, защитные.

С обратной стороны так же микросхемка EPROM, развязка по питанию, и стабилизатор 3,3 В, и IDC разъём припаян для подключения. В отличие от оригинальной версии, китайцы, конечно, на аппаратной части значительно сэкономили. Во-первых, это отсутствие защитных диодов по входам. В оригинальной версии это есть. Также там присутствует предохранитель, SMDшный стоит, по питанию. И самое большое отличие – это применение многослойной печатной платы. Здесь же плата двухслойная. Соберём прибор и приступим к обзору программной части. Итак, это старая версия программы, 1.1.15. Анализатор у нас не подключён, и сейчас мы можем воспользоваться программой в режиме симуляции. Но об этом попозже. Начнём с настроек, их не так много. Первое это размер буфера, то есть, то количество сэмплов, которое мы можем увидеть левее первого срабатывания триггера. По умолчанию 10 миллионов, но можем изменить от 1 до 1000. И активировать длинную запись, до 1 триллиона сэмплов. Но здесь предупреждение, что это займёт много памяти. Далее, настройки интерфейса и проверки обновлений, настройки для 16-канального анализа. И здесь мы можем указать папку с дополнительными плагинами, анализаторами протоколов. Настройки захвата, количества сэмплов, от 1 миллиона до 10 миллиардов, и частота сэмплирования, от 25 кГц до 24 МГц.

Первое неудобство – это то, что нельзя просто взять мышкой и перетащить канал на нужное место. Даже щелчок правой кнопкой не открывает никаких свойств. Меню свойств канала находится левее. Если подвести мышку левее триггера, появляется маленькая кнопочка. И здесь у нас параметры канала скрыть канал, скрыть все каналы ниже, показать, передвинуть вниз. Весьма неблагодарное занятие, особенно если необходимо передвинуть несколько каналов. Так что тут проще подключить сразу в нужном порядке, чем потом через менюшку, это очень долго, передвигать.

Настройки триггера весьма скромные это у нас либо восходящий фронт, либо спадающий фронт. И для остальных каналов мы можем задать дополнительные условия. Сейчас синхронизация запустится в момент, когда на нулевом канале будет спадающий фронт, на первом канале в этот момент будет высокий логический уровень, на втором низкий, и на третьем высокий. Теперь поддерживаемые протоколы. Их не очень много, но зато есть SPI Ии V2C, самые популярные в микроконтроллерах интерфейсы. Добавляем SPI – и попадаем в настройки. Здесь указываем, к какому каналу подключён какой сигнал. И настраиваем свойства протокола какой бит первый, количество бит на посылку, до 64, 8 стандартно, полярность, фаза тактового сигнала, и какое активное состояние Enable, низкое или высокое. Сохраняем, и программа предлагает нам переименовать каналы. Соглашаемся. И воспользуемся симуляцией. На остальных каналах хаотичная последовательность символов, так как никаких протоколов на них не назначено. Увеличиваем масштаб, Enable, тактовый сигнал, выходящие данные, входящие данные. Последний байт не докодируется, так как в этот момент Enable высокий, то есть, не активна у нас передача. И над каждым байтом его значение. Можем изменить настройки, в какой системе лучше отображать. Мне удобнее в двоичной, вот наши байты в двоичной системе. Справа окно измерений, то есть, наводя курсор, мы видим ширину импульса, период и частоту. Можем добавить скважность, и показывать байт.

Также есть возможность установить курсоры, но работают они весьма странно. То есть, для быстрой навигации это не годится. Мы поставили два курсора, хотим другой байт какой-то посмотреть, и никак быстро перейти к нему не можем. Если нажмём опять на Т1, то заново программа предложит установить курсор. Не очень это удобно, но как есть. Новая версия программы 1.1.34 бета. Этот интерфейс мне нравится гораздо больше. Всё более однородно, лучше отрисовано, и наконец-то можно просто взять – и мышкой перетащить канал в нужное место. Или даже несколько каналов. А не лазить через меню, как в предыдущей версии, которая в этой версии также на виду. Можно изменить также вертикальный масштаб канала. И по правому щелчку тоже появляется меню. Продолжительность захвата теперь устанавливается не только в сэмплах, но и по времени, в миллисекундах или в секундах. Поставим 10 секунд, 4 МГц, частота сэмплирования. Как видите, в новой версии наш китайский анализатор определился без проблем. Добавилось довольно много новых протоколов, как вы видите. Не буду все перечислять, но вот даже USB 1.1, PS/2, JTAG, и даже HD44780. Теперь можно отлаживать дисплей. Дальнейшую работу я покажу на реальном устройстве. добавим протокол SPI, входящих данных у нас нет. И протокол, по умолчанию все настройки. Скроем пустые каналы, и сделаем побольше оставшиеся. Скрыть каналы, выделим все, увеличиваем масштаб…
Настройки синхронизации в этой версии расширились. Хотя по-прежнему им далеко до профессиональных логических анализаторов, но всё равно, это уже какой-то шаг вперёд. Помимо синхронизации по восходящему и спадающему фронту, есть возможность синхронизации по ширине импульса, как положительного, так и отрицательного. Сейчас нам это не понадобится. Установим синхронизацию по восходящему фронту. Проверим настройки, 10 с, частота 4 МГц. Нажимаем старт, и ждём события от триггера. Событие произошло, сделаем несколько посылок… Думаю, хватит. Вот наша первая посылка. Почему-то здесь не произошло распознавание отправляемых данных. Очень странно… Надо будет проверить в ранней версии программы. Возможно, это связано с бета версией. Вот они, наши тактовые импульсы. И в конце защёлкивающие импульс, который выводит данные на выходы регистра. Проверим остальные посылки… Да, в остальных всё в порядке. Настроим на двоичное отображение… Давайте посмотрим, что с первой посылкой в старой версии программы. Нажимаем Старт и ждём события от триггера. Так, первая посылка… Тоже не докодировалась. Очень жаль. Остальные проверим. Уже вижу… Да, всё в порядке.

Теперь о новых плюшках. Появилась вкладка аннотаций. Здесь мы можем добавить закладку, пару маркеров, так же, как в предыдущей версии, или измерение. Добавляя закладку, мы просто сохраняем текущую позицию экрана и при навигации можем легко вернуться. Пара маркеров, так же, как и в предыдущей версии, но работает, конечно, намного лучше. Во-первых, мы можем поставить несколько пар. И во-вторых, опять же, есть возможность навигации по ним, довольно удобно. Первая пара, вторая… Мы можем неограниченное количество их использовать. Также можно добавить измерения. Что это такое? Штука довольно полезная. Похожее на пару маркеров, но более функциональное. Так же устанавливаем начальную и конечную точку, и теперь это измерение у нас всегда отображается.
В настройках можем указать необходимые отображаемые величины средняя частота, средняя скважность, количество фронтов, восходящих и нисходящих, количество положительных и отрицательных импульсов, максимально узкий положительный, максимально широкий положительный импульс. Также отрицательный, период, средний период и количество периодов. При наведении курсора теперь сверху сигнала отображается измерения. Хотя мы можем настроить отображение как и в предыдущей версии в боковой панели, этот режим мне не очень нравится. Гораздо удобнее сразу все измерения при наведении курсора. Из новых плюшек – это список декодированных данных. Можем использовать его для быстрой навигации. Также доступен поиск по этому списку, но пока работает он весьма странно. То ли количество символов в строке ограничено, то ли эту функцию пока ещё не доделали. То есть, попробуем найти, допустим, 01 00 1111. Ничего. А если без пробелов… Тоже ничего. И попробуем полностью ввести строку… Всё, опять ничего. Надеюсь, в следующих версиях программы они эту штуку профиксят, так как это довольно полезно.

Небольшое неудобство – то, что при установке продолжительности захвата в сэмплах нельзя ввести 10 и поставить букву М, чтобы установить 10 миллионов сэмплов. Обязательно надо ввести именно цифрами, 10 000 000. Попробуем посмотреть какой-нибудь более скоростной интерфейс, например, I2S. Анализатор сейчас подключён к ЦАПу, и я подключу по порядку все каналы. CLOCK – это BIT CLOCK, FRAME – WORD CLOCK, и DATA – объяснять не нужно. Здесь нет сигнала, только MASTER CLOCK. Все остальные параметры оставляем по умолчанию, так как формат передачи I2S. Сохраняем. Скроем ненужные каналы опять. Сейчас у меня воспроизводится файл с частотой дискретизации 44,1 кГц и разрядностью 16 бит. Итак, вот они, наши 44 кГц на WORD CLOCK. BIT CLOCK, как мы видим, не очень симметричные импульсы. Но нам важно только моменты спадающих фронтов. И время между ними всегда одинаковое. Так что никаких проблем. И поочерёдно первый и второй каналы. Так как в настройках у меня установлено 24 бита на слово, а проигрывается 16, то, естественно, последние биты заполнены нулями. Я переключился на другой файл, 96 кГц с разрядностью 24 бита. Итак, 96, BIT CLOCK… Опять немножко несимметричные импульсы, но расстояние между ними всегда одинаковое, так что никаких проблем. И уже в каждом слове реальных 24 бита.

Основные характеристики прибора:

  • до 32 входных каналов;
  • память 128 КБайт на каждый канал;
  • частота дискретизации до 100 МГц;
  • вход внешнего тактирования;
  • все входы совместимы с 3.3 В и 5 В логикой;
  • настраиваемый размер буфера предвыборки/поствыборки кратный 8 КБайт;
  • 16 битный генератор внутренней синхронизации;
  • несколько режимов внутренней синхронизации;
  • программируемая задержка синхронизации;
  • программируемый счетчик событий синхронизации;
  • вход внешней синхронизации;
  • коммуникация с ПК по LPT (EPP режим) или USB интерфейсу;
  • несколько версий приложений для ПК под различные операционные системы.

Основным элементом логического анализатора является ПЛИС , производства компании , которая и выполняет все основные функции. Принципиальная схема прибора изображена на Рисунке 1.

В качестве источника тактовой частоты для ПЛИС используется осциллятор IC4 (IC6), позаимствованный со старой материнской платы компьютера. Несмотря на то, что осциллятор рассчитан на работу при напряжении 5 В, проблем в работе прибора при питании его напряжением 3.3 В выявлено не было.

Для хранения выборок используется внешнее быстродействующее ОЗУ - микросхема .

Для питания прибора используется внешний источник с выходным напряжением до 15 В. ПЛИС и ОЗУ имеют напряжение питания 3.3 В, поэтому установлен регулятор напряжения 3.3 В серии LD1117DT33 .

Коннектор параллельного порта K7 размещен на плате логического анализатора и подключен непосредственно к ПЛИС. Печатная плата логического анализатора двухсторонняя, используются компоненты для поверхностного монтажа и обычные компоненты с выводами. Вид печатной платы показан на Рисунке 2.

Замечание. Вместо вывода 40 (Vss) микросхемы SRAM к «земле» подключен вывод 39 этой микросхемы. Решение: соединить на печатной плате вывод 39 и 40 вместе (вывод 39 не используется в микросхеме SRAM).

Для подключения к персональному компьютеру по интерфейсу USB необходимо использовать специальный адаптер, схема которого изображена на Рисунке 3.

Адаптер USB интерфейса для логического анализатора собран на микросхеме серии FT2232C производства компании FTDI. Данная микросхема объединяет в себе функциональность двух отдельных микросхем FT232BM и FT245BM. Она имеет два канала ввода/вывода, которые конфигурируются отдельно. Основные моменты конфигурации FT2232C для применения в составе прибора - это питание от USB интерфейса и режим эмуляции шины микроконтроллера (MCU Host Bus Emulation mode). Этот режим конвертируется в протокол EPP посредством мультиплексора IC3 74HCT4053D. Так как непосредственное декодирование сигналов /DST, /AST и RD/WR может вызывать конфликты таймингов, используется дополнительный сигнал A8, который используется в качестве сигнала RD/WR (чтение/запись) в периоды передачи данных по EPP протоколу.

Коннектор JTAG (CON2) используется для конфигурирования ПЛИС - это для будущих разработок, на текущий момент данный интерфейс не используется.

Микросхема EEPROM серии 93LC56 (IC2) хранит конфигурационные данные для микросхемы FT2232C и является обязательным элементом для правильного функционирования программируемого интерфейса. Для программирования данной микросхемы используется утилита FT_Prog (ранее она имела название MProg). Данная утилита и драйвера FT2232C доступны для скачивания на сайте компании FTDI.

Печатная плата адаптера разработана односторонней, что упрощает ее изготовление.

Существует также версия B 1.0 адаптера USB интерфейса (Рисунок 5). Данная версия отличается отсутствием коннектора JTAG и печатной платой, которая выполнена с учетом встраивания ее в корпус коннктора CANNON 25. Внешний вид собранных адаптеров а Рисунке 6.

a) b)
Рисунок 6. Внешний вид адаптера USB интерфейса версия A 1.1 (а) и версия B 1.0 (b)

Также имеется еще одна версия схемы логического анализатора (Рисунок 7), в которую уже интегрированы интерфейсы USB и LPT. Автором этого варианта является Bob Grieb и при разработке схемы использовалась среда TinyCAD, печатная плата для него разрабатывалась в редакторе FreePCB.

0

Vassilis Serasidis Логический анализатор - это инструмент, который позволит увидеть и проанализировать последовательность логических 0 и 1 в цифровом сигнале. К примеру, можно изучить цифровой сигнал с ИК приемника-демодулятора типа TSOP-1736, выходные и входные сигналы микросхемы MAX232, а также шину I2C (линия тактирования и линия данных) во многих электронных устройствах. В статье мы рассмотрим конструкцию миниатюрного 4-канального логического анализатора с ЖК дисплеем от мобильного телефона Nokia 5110/3110. Основой конструкции является микроконтроллер Atmel ATmega8, помимо него используются еще несколько дискретных компонентов. Основные характеристики прибора: 4-канальный логический анализатор; возможность исследования сигналов с частотой до 400 кГц; входное напряжение до +5 В; ЖК дисплей с разрешением 84 × 48 точек; питание от 4 аккумуляторов 1.2 В, максимальное напряжение питания 4.8 В; память: от 3.7 мс для высокоскоростных сигналов до 36 с для низкоскоростных сигналов; кнопки управления; простая конструкция. Принципиальная схема На Рисунке 1 представлена принципиальная схема прибора. Сразу следует отметить, что прибор питается от 4 аккумуляторов с напряжением 1.2 В каждый.
Нажмите для увеличения Внимание!!! Питание от 4 батареек с напряжением 1.5 В недопустимо, при данной схеме прибора, так как напряжение 6 В может вывести из строя микроконтроллер и ЖК дисплей.
Выключатель S1 предназначен для подачи питания. Подтягивающие резисторы R2-R5 установлены с целью исключения появления ложных данных на цифровых входах прибора из-за влияния электромагнитных полей или при касании пальцами сигнальных щупов. Светодиод LED1 предназначен для индикации наличия сигнала на цифровых входах прибора и, следовательно, начала записи сигналов в память. В схеме используется ЖК индикатор от мобильного телефона Nokia 3310/5510, он рассчитан на работу при напряжении питания 3.3 В - 5.0 В, однако максимальное напряжение для подсветки дисплея - 3.3 В, поэтому в схеме установленo три последовательно включенных диода 1N4007 (D1-D3) по линии питания подсветки дисплея. Благодаря диодам напряжение снизится до 2.7 В и его вполне будет достаточно для питания подсветки. Процесс захвата данных и программное обеспечение Следует отметить, что автором подготовлены две версии прошивки микроконтроллера. Изначально, для версии 1.00 логического анализатора, использовалась интегрированная среда разработки AVR Studio 4.18, но затем автор перекомпилировал исходный код и для AVR Studio 5 - версия 1.01. После перекомпиляции под 5 версию среды разработки и дальнейшего тестирования прибора, было замечено улучшение стабильности захватываемых сигналов. Запись сигналов ведется во внутренний буфер памяти ОЗУ, который рассчитан на 290 отсчетов. Буфер данных образован 870 байтами (для 1 версии программы микроконтроллера) из которых 2 байта используются для счетчика и 1 байт для информирования о входном канале. В версии 1.01 буфер данных был сокращен до 256×3=768 Байт с целью увеличения скорости захвата данных, т.к. переменная размера буфера является 8-битной, вместо 16-битной, которая использовалась в первой версии ПО. После подачи питания, микроконтроллер переходит в режим ожидания импульса на любом из 4 входов прибора. По определению входного импульса микроконтроллер начинает подсчет времени до поступления следующего импульса на любом из 4 входов. Длительность выборки хранится в 16-битной переменной «counter». После переполнения этой переменной информация о состоянии 4 входов и значение счетчика сохраняются в буфере и значение его адреса увеличивается на три (2 байта для счетчика и 1 байт - информация о входной линии). Этот процесс повторяется пока микроконтроллер не заполнит весь буфер (870/3=290 выборок или импульсов). Процесс записи сигналов в память микроконтроллера изображен на рисунке 2. После заполнения буфера, все накопленные данные отображаются на ЖК дисплее в виде осциллограммы. Пользователь может управлять осциллограммой - передвигать влево (кнопка S3) или вправо (кнопка S4), чтобы просмотреть всю сохраненную последовательность импульсов. Если были записаны низкоскоростные сигналы, то пользователь может изменить масштаб в пропорции 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 или 8192 нажатием на кнопку S2. При программировании микроконтроллера необходимо установить Fuse-биты в соответствии с рисунком. Вид печатной платы и расположение компонентов

В данной статье представлен простой логический анализатор работающий с оболочками USBee v1.1.57 и Logic v1.1.15. Собран на микросхеме распространенной микросхеме CY7C68013A фирмы Cypress. У меня имелась готовая плата с этой микросхемой заказанная с сайта Aliexpress. Вот такой у нее вид:

Хотел на ней сделать LPT порт, но потом надобность в нем пропала и так она валялась не востребованная. Понадобился мне простой логический анализатор. Решено было сделать на этой плате. На просторах интернета много схем на этой микросхеме. Требовалось добавить буфер для передачи данных, сделать защиту по входу и возможность выбора с какой оболочкой работать. Плата расширения одевается сверху основной платы. Скажу сразу, что схема, плата, прошивки и все необходимое для работы с данным логическим анализатором находится внизу статьи. В качестве буфера использовалась микросхема 74LVC4245 , можно применить 74LVC8T245A они полностью идентичны. Защитную функцию по входу выполняют диодные сборки BAV99. И так родилась такая схема:


Джампером J1 выбираем направление передачи данных. В замкнутом состоянии на прием данных, в разомкнутом на передачу. Есть такая оболочка как USBee AX Test Pod . Она содержит много тестовых утилит при помощи нее можно протестировать работу собранного устройства. Одна из возможностей это генерировать на выводах XP3 разные частоты. Правда самому задавать их нельзя. Выводится сразу 8 разных частот. Также можно устанавливать в 0 или 1 выходы и много других тестов. Джампером XP5 выбираем с какой оболочкой будем работать USBee v1.1.57 или Logic v1.1.15 . В U2 и U3 соответственно загружается прошивка для разных оболочек. Джампер XP4 это защита от записи. Нужен будет при старте оболочки от Logic. Джампером J2 задаем напряжение входных уровней. Если он замкнут то входной уровень сигнала должен быть 3.3 V. Так же предусмотрена возможность установить уровень сигнала такой каким напряжение питается диагностируемое устройство но не больше 5V. Для этого размыкаем J2 и напряжение питания диагностируемой платы подаем на 10 вывод XP3. Так же не забываем соединить между собой общий провод анализатора с диагностируемой платой. Для начала нам нужно доработать основную плату т.е удалить микросхему памяти 24C128.

У моей платы также не было соединения GND USB разъема и GND CY7C68013A пришлось соединить проводком.


Больше никаких изменений делать не нужно.

Теперь изготавливаем нашу платку размером 41мм х 58мм. В итоге получаем такой результат:



Соединяем две платы:



Для начала работы нам нужно прошить микросхемы памяти. Для этого устанавливаем утилиту от Cypress CySuiteUSB_3_4_7_B204 . Убираем с платы джампер XP5 и подключаем плату к ПК, в диспетчере устройств появится неизвестное устройство.


Устанавливаем драйвера из файла Driver_Cypress_win7 win8. Указываем диспетчеру, что искать драйвера в этой папке. Система сама установит необходимый драйвер. Появится новое устройство в контроллерах USB:


Запускаем установленную программку Control Center . Перед нами откроется окно, где в верху должно быть наше устройство.

Выбираем вкладку Option затем EZ-USB Interface:

Откроется следующее окно:


Ничего здесь не меняем. Нам нужна только кнопка S EEPROM. Джампером XP5 выбираем одну их микросхем памяти. Нажимаем S EEPROM и указываем где хранится наша прошивка. Выбираем прошивку в зависимости от типа памяти и нажимаем "Открыть". Цифры в конце названия прошивки указывают для какого типа памяти прошивка. Для 24C01 нужно выбирать USBeeAX_01, а для 24C02 USBeeAX_01.


Пойдет процесс заливки информации. При удачной прошивке должно быть сообщение как на скриншоте. Кол-во байт может отличаться в зависимости от выбранной прошивке.


Нажимаем кнопку сброс на плате и видим в диспетчере устройств новое неопознанное устройство. Устанавливаем драйвера. В автоматическом режиме драйвера не установятся. В ручном режиме указываем, что установить с диска и выбираем драйвер из папки Driver Cypress win7_win8. У меня на Windows 8.1 заработало с драйвером EZ-USB FX1 No EEPROM (3.4.5.000).